
2020-08-14

1

ECE 150 Fundamentals of Programming

Prof. Hiren Patel, Ph.D.

Prof. Werner Dietl, Ph. D.

Douglas Wilhelm Harder, M.Math. LEL

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

 Some rights reserved.

C-style strings

2
C-style strings

Outline

• In this lesson, we will:

– Describe what a string is

– Look at how to store a string in a character array

– See some of the limitations of the choice for C-style strings

– Look at two functions that work with C-style strings

3
C-style strings

Strings

• A string is a sequence of characters meant to represent an
expression in a language

– All entries of a string come from a fixed alphabet

– It makes sense that this could be stored as an array

• If the phrase is in English, we can use a character array

– Creating strings from other languages requires Unicode

– New-line and tab characters ('\n' and '\t') could be used for

some basic formatting

• Additionally, we may want to make changes to the string:

– Adding a few characters

– Delete a few characters

– Replace a character

4
C-style strings

Strings

• What strategy would you use to store such a string?

– We’re definitely going to use an array of characters

int main() {

 // Initialize the first eight characters with

 // "Good day"

 // - all other characters are set to '\0'

 // that is, the null character or 0b00000000

 char phrase[100]{'G', 'o', 'o', 'd', ' ', 'd', 'a', 'y'};

 // Use this character array

 return 0;

}

– How do we determine the end of the string?

2020-08-14

2

5
C-style strings

Strings

• Question: How do you record how long the actual string is?

– That is, which characters actually make up the string in question

• One solution: Have a second local variable:

int main() {

 char phrase[100]{'G', 'o', 'o', 'd', ' ', 'd', 'a', 'y'};

 unsigned int phrase_length{8};

 // Use this character array

 return 0;

}

– Problem: Now you must always pass around two variables

6
C-style strings

Strings

• Suppose you can write a message to a friend on a tape

– You can indicate where the message starts

– Question: does it end with the '.', or does it continue?

– A reasonable solution is to use something not normally used to flag
the end of the message

• For example, a character not expected to appear in a string

7
C-style strings

C-style strings

• A C-style string does exactly that

– The null character '\0' is used to designate the end of the string

– The null character is not part of the string

• It is used to mark the end of the string

– All other characters after the null character are ignored

– If a character array does not have a null character,

 it is not a string

• When calculating the length of a string, the null character is not
counted

– This string has a length of eight

 char phrase[100]{'G', 'o', 'o', 'd', ' ', 'd', 'a', 'y'};

• The capacity of the character array is 100

8
C-style strings

C-style strings

• Fortunately, the default character is the null character:
int main() {

 // This represents the empty string "" as the first

 // character is the null character

 char phrase[100]{};

 // Use this character array

 return 0;

}

'\0' '\0' '\0' '\0' '\0' '\0' '\0' '\0' '\0' '\0' '\0' ⋯

2020-08-14

3

9
C-style strings

C-style strings

• You can now manipulate strings:
int main() {

 // Initialize the first eight characters with

 // "Good day"

 // - all other characters are set to '\0'

 // that is, the null character or 0b00000000

 char phrase[100]{'G', 'o', 'o', 'd', ' ', 'd', 'a', 'y'};

 std::cout << phrase << std::endl;

 phrase[1] = '\'';

 phrase[2] = 'd';

 phrase[3] = 'a';

 phrase[4] = 'y';

 phrase[5] = '!';

 phrase[6] = '\0';

 std::cout << phrase << std::endl;

 return 0;

}

Output:
 Good day
 G'day!

G o o d d a y \0 \0 \0 ⋯ G ' d a y ! \0 y \0 \0 \0 ⋯

10
C-style strings

Warnings

• It is important to remember that a space ' ' is different from the
null character '\0'

• If you print a character array that does not have a null character,

 the print mechanism will just keep printing the subsequent

 bytes until it finds one byte that is all zeros

11
C-style strings

Odd behavior: Example 1

• Explain the output of this program:
#include <iostream>

// Function declarations

int main();

// Function definitions

int main() {

 char phrase_1[7]{' ', 't', 'h', 'e', 'r', 'e'};

 char phrase_2[5]{'H', 'e', 'l', 'l', 'o'};

 std::cout << phrase_2 << std::endl;

 return 0;

}

Output:
 Hello there

12
C-style strings

Odd behavior: Example 2

• Even better, explain this program:
#include <iostream>

// Function declarations

int main();

// Function definitions

int main() {

 int data[3]{ 1831291168, 1651458592, 33 };

 // int data[3]{541665133, 541224802, 553648128};

 char phrase[6]{'H', 'e', 'l', 'l', 'o', ','};

 std::cout << phrase << std::endl;

 return 0;

}

Output:
 Hello, I'm Bob!

Alternative output:
 Hello,m'I boB

2020-08-14

4

13
C-style strings

Length of a string

• We can author a function to calculate the length of a string:

unsigned int string_length(char str[]);

unsigned int string_length(char str[]) {

 for (unsigned int k{0}; true; ++k) {

 if (str[k] == '\0') {

 return k;

 }

 }

 assert(false);

}

14
C-style strings

Comparing two strings

• We can compare if two strings are equal:

bool string_compare(char str0[], char str1[]);

bool string_compare(char str0[], char str1[]) {

 for (unsigned int k{0}; true; ++k) {

 if (str0[k] != str1[k]) {

 return false;

 } else if (str0[k] == '\0') {

 return true;

 }

 }

 assert(false);

}

15
C-style strings

Mistakes with C-style strings

• What is wrong with this program?
#include <iostream>

// Function declarations

int main();

// Function definitions

int main() {

 char string[3]{};

 string[0] = 'H';

 string[1] = 'i';

 string[2] = '!';

 string[3] = '\0';

 std::cout << string << std::endl;

 return 0;

}

16
C-style strings

Summary

• Following this lesson, you now

– Understand the difference between a character array and a C-style
string

• A C-style string is a character array with the string being all
characters up to but not including the first null character

– Are aware that you must be careful that the capacity of the array is at
least one greater than the length of the string being stored

– Have looked at a number of functions that look at C-style strings

– Later, once we see classes, we will investigate the C++ std::string

2020-08-14

5

17
C-style strings

References

[1] Wikipedia:

 https://en.wikipedia.org/wiki/Kahlil_Gibran

18
C-style strings

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

19
C-style strings

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

